[张贴报告]Hierarchical icephobic surfaces with enhanced photothermal performance for sustainable anti-icing

Hierarchical icephobic surfaces with enhanced photothermal performance for sustainable anti-icing
编号:294 稿件编号:310 访问权限:仅限参会人 更新:2025-04-18 17:03:57 浏览:24次 张贴报告

报告开始:暂无开始时间 (Asia/Shanghai)

报告时间:暂无持续时间

所在会议:[暂无会议] » [暂无会议段]

暂无文件

摘要
Icing remains a major challenge in industrial and environmental applications, leading to efficiency losses, safety hazards, and substantial economic impacts. Conventional deicing methods are energy-intensive and environmentally unsustainable, often requiring high energy inputs, extensive operational maintenance, or the use of harmful chemicals. These drawbacks underscore the need for advanced, scalable solutions that are both efficient and environmentally responsible. Here, we presented the armored photothermal icephobic structured surface (APISS) that combines superhydrophobicity and photothermal effects to deliver superior anti-icing performance. The APISS consists hierarchical micro-nanostructures with titanium nitride (TiN) nanoparticles encapsulated in a silica shell, ensuring exceptional durability and efficient solar energy conversion. Under 1 sun illumination, APISS achieves a temperature increase of 35 °C, effectively melting ice within 179 s and preventing refreezing. Its superhydrophobic properties facilitate the removal of melted water, maintaining a clean and dry surface. Comprehensive testing reveals that APISS significantly outperforms existing anti-icing materials in scalability, durability, and sustainability, making it highly suitable for renewable energy, aviation, and infrastructure maintenance. Our work highlights APISS as an advanced approach to anti-icing technology, addressing critical challenges with a scalable and environmentally friendly solution.
关键字
photothermal effects, hierarchical micro-nanostructures, armored silica shell, icephobic surfaces, durability
报告人
张磊
学生 哈尔滨工业大学(深圳)

稿件作者
郝崇磊 哈尔滨工业大学(深圳)
张磊 哈尔滨工业大学(深圳)
发表评论
验证码 看不清楚,更换一张
全部评论

会议网址、邮箱和联系人

 址:2025.bmgc.cn
 箱:bmgc2025@126.com

联系人:
中国机械工程学会表面工程分会
段金弟 13971036507  蒋 超 18971299299

天津大学
汪怀远 15620274098  王瑞涛 13752444461

北京科技大学
庞晓露 13910128796  郭 涛 13810853897

中国地质大学(北京)
 文 13671111012  康嘉杰 15010333951

注册缴费 提交稿件